The 5 random rows of the dataframe
Country | Date | Vaccinations | Vaccinated | Fully_Vaccinated | Vaccinations_Ratio | Vaccinated_Ratio | Fully_Vaccinated_Ratio |
---|---|---|---|---|---|---|---|
Canada | 2021-07-22 | 47056217.0 | 26783674.0 | 20268756.0 | 123.61 | 70.36 | 53.24 |
Italy | 2021-05-31 | 35434142.0 | 23815455.0 | 12280305.0 | 58.70 | 39.45 | 20.34 |
Palestine | 2022-02-15 | NaN | NaN | NaN | NaN | NaN | NaN |
Bangladesh | 2021-12-29 | NaN | NaN | NaN | NaN | NaN | NaN |
Montenegro | 2022-03-28 | 668025.0 | 289643.0 | 281511.0 | 106.36 | 46.12 | 44.82 |
Table of variables
Variable | Description | Datatype | NAs |
---|---|---|---|
Country | The country for which the vaccination rate is provided | object | 0 |
Date | Date for the data entry | object | 0 |
Vaccinations | The absolute number of immunizations in the country | float64 | 50241 |
Vaccinated | Total number of people vaccinated. A person, depending on the immunization scheme, will receive one or more (typically 2) vaccines; at a certain moment, the number of vaccination might be larger than the number of people | float64 | 52683 |
Fully_Vaccinated | The number of people that received the entire set of immunization according to the immunization scheme (typically 2) | float64 | 55236 |
Vaccinations_Ratio | The ratio between vaccination number and total population up to the date in the country | float64 | 50241 |
Vaccinated_Ratio | The ratio between population immunized and total population up to the date in the country | float64 | 52683 |
Fully_Vaccinated_Ratio | The ratio between population fully immunized and total population up to the date in the country | float64 | 55236 |
Statistical description of numeric data
Vaccinations | Vaccinated | Fully_Vaccinated | Vaccinations_Ratio | Vaccinated_Ratio | Fully_Vaccinated_Ratio | Fully_Vaccinated_Ratio | |
---|---|---|---|---|---|---|---|
mean | 2.12e+08 | 1.03e+08 | 8.57e+07 | 86.25 | 42.69 | 37.19 | 37.19 |
min | 0.00e+00 | 0.00e+00 | 1.00e+00 | 0.00 | 0.00 | 0.00 | 0.00 |
max | 1.17e+10 | 5.17e+09 | 4.71e+09 | 355.75 | 124.88 | 122.94 | 122.94 |
25% | 8.28e+05 | 4.88e+05 | 3.87e+05 | 17.83 | 12.25 | 7.49 | 7.49 |
50% | 6.36e+06 | 3.77e+06 | 2.95e+06 | 75.80 | 45.47 | 35.78 | 35.78 |
75% | 3.96e+07 | 2.21e+07 | 1.82e+07 | 142.02 | 69.76 | 63.88 | 63.88 |
Values of \(R_0\) and herd immunity thresholds (HITs) of well-known infectious diseases prior to intervention
Disease | Transmission | \(R_0\) | HIT, % |
---|---|---|---|
Measles | Aerosol | 12-18 | 92-94 |
Chickenpox (varicella) | Aerosol | 10-12 | 90-92 |
Mumps | Respiratory droplets | 10-12 | 90-92 |
COVID-19 (ancestral strain) | Respiratory droplets and aerosol | 2.4-3.4 | 58-71 |
COVID-19 (Alpha variant) | Respiratory droplets and aerosol | 4-5 | 75-80 |
COVID-19 (Delta variant) | Respiratory droplets and aerosol | 5.1 | 80 |
COVID-19 (Omicron variant) | Respiratory droplets and aerosol | 9.5 | 89 |
Rubella | Respiratory droplets | 6-7 | 83-86 |
Polio | Fecal-oral route | 5-7 | 80-86 |
Pertussis | Respiratory droplets | 5.5 | 82 |
Smallpox | Respiratory droplets | 3.5-6.0 | 71-83 |
HIV/AIDS | Body fluids | 2-5 | 50-80 |
SARS | Respiratory droplets | 2-4 | 50-75 |
Diphtheria | Saliva | 1.7-4.3 | 41-77 |
Common cold | Respiratory droplets | 2-3 | 50-67 |
Monkeypox | Physical contact, body fluids, respiratory droplets | 1.5-2.7 | 31-63 |
Influenza (1918 pandemic strain) | Respiratory droplets | 2 | 50 |
Ebola (2014 outbreak) | Body fluids | 1.4-1.8 | 31-44 |
Influenza (2009 pandemic strain) | Respiratory droplets | 1.3-2.0 | 25-51 |
Influenza (seasonal strains) | Respiratory droplets | 1.2-1.4 | 17-29 |
Andes hantavirus | Respiratory droplets and body fluids | 0.8-1.6 | 0-36 |
Nipah virus | Body fluids | 0.5 | 0 |
MERS | Respiratory droplets | 0.3-0.8 | 0 |
Predicted dates of the end of vaccinations
Country | \(R^2\) | Prediction | Country | \(R^2\) | Prediction | |
---|---|---|---|---|---|---|
Argentina | 0.998 | 01 Jan 2022 | Isle of Man | 0.986 | 03 Oct 2021 | |
Australia | 0.999 | 12 Dec 2021 | Italy | 0.997 | 23 Nov 2021 | |
Bangladesh | 0.994 | 23 May 2022 | Japan | 0.998 | 08 Nov 2021 | |
Belgium | 0.998 | 12 Oct 2021 | Kuwait | 0.997 | 30 Jan 2022 | |
Brazil | 0.998 | 31 Mar 2022 | Luxembourg | 0.991 | 25 Sep 2022 | |
Brunei | 0.997 | 21 Nov 2021 | Macao | 0.986 | 01 Feb 2022 | |
Cambodia | 0.998 | 03 Nov 2021 | Malaysia | 0.999 | 03 Nov 2021 | |
Canada | 0.993 | 19 Sep 2021 | Malta | 0.994 | 03 Aug 2021 | |
Chile | 0.983 | 07 Sep 2021 | Nepal | 0.986 | 21 Jul 2022 | |
Congo | 0.984 | 12 Apr 2023 | New Zealand | 0.997 | 31 Dec 2021 | |
Costa Rica | 0.993 | 17 Feb 2022 | Peru | 0.998 | 23 Feb 2022 | |
Cuba | 0.993 | 22 Nov 2021 | Portugal | 0.999 | 06 Sep 2021 | |
Denmark | 0.996 | 01 Oct 2021 | Samoa | 0.962 | 24 May 2022 | |
Faeroe Islands | 0.996 | 23 Sep 2021 | Singapore | 0.993 | 13 Sep 2021 | |
Finland | 0.999 | 25 Dec 2021 | South Korea | 0.998 | 11 Nov 2021 | |
France | 0.997 | 24 Dec 2021 | Spain | 0.998 | 15 Sep 2021 | |
Guernsey | 0.994 | 25 Dec 2021 | Taiwan | 0.999 | 08 Feb 2022 | |
Iceland | 0.995 | 06 Sep 2021 | United Arab Emirates | 0.995 | 19 Aug 2021 | |
Ireland | 0.999 | 01 Oct 2021 | Vietnam | 1.000 | 21 Jan 2022 |